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Language comprehension is an incremental process with prediction. Delineating various

mental states during such a process is critical to understanding the relationship between

human cognition and the properties of language. Entropy reduction, which indicates the

dynamic decrease of uncertainty as language input unfolds, has been recognized as

effective in predicting neural responses during comprehension. According to the entropy

reduction hypothesis (Hale, 2006), entropy reduction is related to the processing difficulty of a

word, the effect of which may overlap with other well-documented information-theoret-

ical metrics such as surprisal or next-word entropy. However, the processing difficulty was

often confused with the information conveyed by a word, especially lacking neural dif-

ferentiation. We propose that entropy reduction represents the cognitive neural process of

information gain that can be dissociated from processing difficulty. This study character-

ized various information-theoretical metrics using GPT-2 and identified the unique effects

of entropy reduction in predicting fMRI time series acquired during language compre-

hension. In addition to the effects of surprisal and entropy, entropy reduction was asso-

ciated with activations in the left inferior frontal gyrus, bilateral ventromedial prefrontal

cortex, insula, thalamus, basal ganglia, and middle cingulate cortex. The reduction of

uncertainty, rather than its fluctuation, proved to be an effective factor in modeling neural

responses. The neural substrates underlying the reduction in uncertainty might imply the

brain's desire for information regardless of processing difficulty.

© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI
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1 Probabilistic grammars are introduced pedagogically in Ap-
pendix C of Jurafsky and Martin's Speech and Language Pro-
cessing 3rd Edition (Jurafsky & Martin, 2019) and Chapter 10 of
Eisenstein's Introduction to Natural Language Processing
(Eisenstein, 2019).
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1. Introduction

When humans comprehend language with uncertainty about

the upcoming utterance, they not only decode the semantic

content but also constantly engage in numerous complex and

automated cognitive processes, particularly real-time predic-

tion. Such prediction happens at multiple levels of language,

one of which is the level of word (Caucheteux et al., 2023;

Heilbron et al., 2022; Kuperberg & Jaeger, 2016; Pickering &

Gambi, 2018). To characterize the prediction-related mental

processes and link the stimuli with neurocognitive activities,

deep language models are used to infer the metrics based on

the probability distribution of words in the vocabulary. These

metrics have been found able to find shared computational

principles for language processing in the human mind and

large language models (Goldstein et al., 2022), including that

they both are engaged in continuous next-word prediction

and that they compare their pre-onset predictions to the

incoming word to calculate the post-onset surprise. Informa-

tion theory-derived metrics have been developed and linked

to the mental and neural processes of language comprehen-

sion, but these metrics were mostly interpreted as indicators

of complexity and processing difficulty in sentence compre-

hension (Hale, 2016; Wehbe et al., 2021). These metrics have

also been linked to the ‘information’ gained from processing

the sequence (Hale, 2006), but the relationship between

various metrics and their specific implications has not been

clarified.

Surprisal and entropy are the two most studied neural-

linguistic metrics associated with prediction uncertainty.

The surprisal of a word is determined by the deviation to its

probability to occur in the context (Hale, 2001; R. Levy, 2008).

Entropy (Shannon, 1948, 1951) of an upcoming word indicates

the uncertainty, or the confidence of predicting the next word

before it occurs, regardless of what the actual word would be.

Surprisal can index prediction errors which leads to

increasing processing effort (Demberg & Keller, 2008; Smith &

Levy, 2013). Given “The day was breezy so the boy went

outside to fly …”, the continuation “an airplane” would elicit

higher surprisal than “a kite” (DeLong et al., 2005). Such high

surprisal has been linked to some neurobiological signatures,

including N400 (Fitz& Chang, 2019; Hodapp& Rabovsky, 2021).

By modeling blood oxygen level-dependent (BOLD) signals

during comprehension of spoken language stimuli, previous

work has also identified brain regions sensitive to word-level

surprisal, mainly located in bilateral temporal gyri (Russo

et al., 2020; Shain et al., 2020; Willems et al., 2016). Different

from surprisal that reflects a backward-looking cognitive

process (that is, the deviation to existing prediction), entropy

is a forward-looking metric that quantifies the confidence of

newly generated prediction, providing evidence that the next-

word entropy and surprisal have distinctive effects in

modeling BOLD signals during comprehension of spoken

language stimuli (Willems et al., 2016).

Both surprisal and entropy depict important aspects of the

mental states during language processing, but they charac-

terize neither the state of comprehension per se, nor the

outcome of successful comprehension. Correspondingly, en-

tropy reduction (ER) which has been emphasized in recent
Please cite this article as: Song, M., et al., The unique contribution of
sion, Cortex, https://doi.org/10.1016/j.cortex.2024.09.007
years can quantify the levels of understanding by measuring

the change of prediction uncertainty (Venhuizen et al., 2019)

in continuous sentence processing. The unclosed sentence “In

a breezy day, the boys went outside to …” becomes more

predictable when the verb “fly” appears, resulting in a reduc-

tion of uncertainty about the rest of the sentence. The entropy

reduction after seeing the word “fly” is higher than seeing the

word “look”, because “look” does not tend to increase one's
confidence in predicting the following sequence since the

word “to” is presented, whereas “fly” leads to more certain

prediction of the following sequence. With the intuition that

entropy reduction is a kind of “information gain”, the entropy

reduction hypothesis (ERH) suggests that entropy reduction is

positively related to human sentence processing difficulty, as

processing difficulty at a word is proportional to the infor-

mation gain brought by it (Hale, 2006). However, the related-

ness between processing difficulty and ER does not imply that

ER merely reflects processing difficulty, nor does it imply that

ER represents the samemental process as surprisal or entropy

does. ER has been found to affect reading time independently

from that of surprisal (Frank, 2013; Linzen & Jaeger, 2016;

Lowder et al., 2018). Neural correlates of entropy reduction

have been found in the temporal lobe via intracranial elec-

trodes (Nelson, Dehaene, et al., 2017). An ERP study found that

ER appeared to quantify different neural processes with

compared to surprisal (Frank et al., 2015), but it failed to

identify a corresponding ERP component. Hale et al. (2018)

emphasized the ER calculated with a syntactic, rather than

non-syntactic, neural language model yielded electrophysio-

logical responses on anterior frontal electrodes. Although

these electrode-based studies rarely involve areas beyond the

cortical surface, they suggested a unique role of ER.

However, the operational definitions of information-

theoretical metrics, particularly in terms of entropy reduc-

tion, have varied across studies. Most studies agreed that

surprisal can be quantified as a word-based measure, but re-

searchers made efforts to expand the concept of entropy

beyond vocabulary, specifically to include uncertainty about

the rest of the sentence (Hale, 2006). These uncertainty values

are usually defined using probabilistic grammars1 (Hale, 2006;

Yun et al., 2015). Entropy reduction calculated by grammar-

based approaches was found to be correlated with neuro-

physiological activities (Hale, 2006; Nelson, Dehaene, et al.,

2017), and other studies have confirmed the effect of entropy

reduction in reading time (Wu et al., 2010). Although some

studies posit that a word's syntactic category might be unde-

termined on the first encounter (Frank, 2010, 2013), the issue

could be solved by multipath parsing (Brennan et al., 2020;

Franzluebbers et al., 2024; Hale et al., 2018). Word-based ap-

proaches proposed in (Frank, 2010, 2013) remain noteworthy

for their emphasis on semantic content rather than sentence

structure, and they avoid the difficulties associated with

writing grammars, allowing more researchers to understand
uncertainty reduction during naturalistic language comprehen-
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and expand its implications. Frank and colleagues measured

simplified entropy reduction based on several future actual

words and found effects on reading time (Frank, 2013), but

they failed to identify a corresponding neural component

(Frank et al., 2015). Lowder et al. (2018) used a cumulative cloze

task of the next word to measure both surprisal and entropy

reduction, suggesting that they capture different aspects of

lexical predictability. A computational linguistic model

defined in a limited semantic space also suggested that sur-

prisal and ER reflect different aspects of incremental

comprehension (Venhuizen et al., 2019), but it is difficult to

expand the semantic space to cover a broader language.

Overall, these methods had varying degrees of compromise in

quantifying the uncertainty about the sentence.

We propose that the entropy reduction in the sequential

language input results in a change in cognitive state that is

beyond processing difficulty. In this study, we quantify

simplified ER using actual word probabilities, inspired by the

work of Frank and colleagues (Frank, 2013; Frank et al., 2015).

There are two reasons for doing this: First, uncertainty about

the whole sentence is reflected to some extent in entropy

regarding future words, i.e., reflected by the confidence in

what the actual following words are. Second, as surprisal was

calculated based on the next-word prediction, it would

benefit the comparison of metrics to quantify the measures

in a unified form, such as using generative GPT models. This

would help to clarify the relationship among different infor-

mation measures at the same level. In this way, ER targets

the fluctuation of uncertainty about the following actual

words rather than the grammar roles, similar to how sur-

prisal and entropy were used in previous studies (Russo et al.,

2020; Willems et al., 2016). The fluctuation of uncertainty is a

commonly studied cognitive process in various non-language

tasks. It had independent incentive value in children learning

(Feldstein, 1973; Nicki & Shea, 1971; Wentworth & Witryol,

1984) and played a role in promoting domain-general

reward pursuit (Asutay et al., 2020; Daikoku, 2019; Gold

et al., 2019; Kringelbach, 2005; Shen et al., 2015). Therefore,

we expect that the effects of ER can be distinguished from

that of surprisal, especially in brain areas that are not lan-

guage-specific.

One brain area of particular interest is the ventromedial

prefrontal cortex (vmPFC), which cannot be investigated by

electrophysiological studies. vmPFC was involved in process-

ing various forms of uncertainty (Bechara et al., 2000;

Critchley et al., 2001; Hsu et al., 2005; Huettel et al., 2006; I. Levy

et al., 2010), semantic composition (Bemis & Pylkk€anen, 2011;

Pylkk€anen, 2019a; Pylkk€anen et al., 2009) and reward pro-

cessing (Ciaramelli et al., 2021; Grabenhorst & Rolls, 2011;

Pujara et al., 2016; Rolls, 2022; Strait et al., 2014). Even when

the task did not explicitly require predictions, vmPFC spon-

taneously tracked the prediction about the choice of the

subject's partner in a referential communication game (Mi

et al., 2021). vmPFC has also been found to reflect the stable

trait of uncertainty aversion by how it expands the repre-

sentational space of different concepts (Vives et al., 2023). We

expect vmPFC to also be responsible for tracking the change of

uncertainty, or in other words, the information gain, in

naturalist speech processing, by differentiating the effect of

entropy reduction from other difficulty-related measures.
Please cite this article as: Song, M., et al., The unique contribution of
sion, Cortex, https://doi.org/10.1016/j.cortex.2024.09.007
The goal of this study is to identify the uniqueness of

gaining information in continuous language processing. We

hypothesize that the amount of information gained from the

incoming word (characterized by entropy reduction) during

naturalistic language comprehension predicts a unique pro-

portion of neural responses that cannot be accounted for by

processing difficulty (indexed by entropy and surprisal). We

derived these metrics using the pre-trained GPT-2 model

(Radford et al., 2019) and subsequently employed them to

predict fMRI signals acquired during the listening of corre-

sponding narrative stories (Bhattasali et al., 2020). We per-

formed a region-of-interest analysis to investigate the roles of

these metrics in accounting for vmPFC activations. Addition-

ally, we identified other brain areas that were sensitive to the

prediction difficulty during language processing based on the

effects of entropy and surprisal. Crucially, we differentiated

the effects of entropy reduction in predicting brain activities

from that of the other twometrics to unbind information gain

from processing difficulty in language comprehension. We

expect that ER accounts for neural responses during contin-

uous speech comprehension that are not characterized by the

metrics of processing difficulty, particularly in vmPFC.

We used the Alice Dataset (Bhattasali et al., 2020), an open

neural dataset collected when participants listened to the first

chapter of Alice in Wonderland, to address our questions. This

dataset has been widely used to investigate correlations be-

tween linguistic structure and brain activities. The electro-

physiological data has been used to compare different

computational models by investigating amplitude effects

(Brennan, 2016; Brennan & Hale, 2019; Hale et al., 2018). The

fMRI data has been applied to investigate the correlations

between processing-complexity predictors and neural activ-

ities in temporal and frontal regions (Brennan et al., 2016,

2020; Hale et al., 2015; Li et al., 2016), but has discussed little

about entropy reduction. There is difficulty in integrating all

these results while focusing on different information mea-

sures rather than different computational models. Consid-

ering that language models have been proven to provide

efficient modeling for next-word predictions (Goldstein et al.,

2022), we calculated all the information measures based on

the publicly available language model and re-analyzed the

fMRI data in this study, which facilitates replication and

comparison.
2. Materials and methods

2.1. The Alice Dataset

This study used the text stimuli and reanalyzed the fMRI data

from the Alice Dataset (Bhattasali et al., 2020). Human subjects

listened to the first chapter of Alice in Wonderland while being

scanned. The audio stimulus presented to each participant

lasted 12.4 min. The corresponding text transcription was

segmented into 2132 words. Linguistic annotations of the

words were provided, including the timestamps (onsets and

offsets) on the auditory stimulus, the log-transformed lexical

frequency (LgWF), and the prosodic break strength (PBS). The

prosodic break strength is a perceptual judgment of break

index strength (Beckman et al., 2010). Themagnetic resonance
uncertainty reduction during naturalistic language comprehen-
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imaging as well as the electro-physiology data were provided

in the dataset. We only use the fMRI data that were collected

using a 3 T MRI scanner (Discovery MR750, GE Healthcare,

Milwaukee,WI) with a 32-channel head coil. We adhered to all

the data exclusion criteria and followed the preprocessing

procedures implemented in the originalwork (Bhattasali et al.,

2020), and put the processed data into MNI space with a res-

olution of 2 mm. After excluding the data of subjects with

excessive headmovement and low behavioral performance in

post-scan comprehension tests, data from 23 native English

speakers were included in this study.

2.2. GPT-2-derived information-theoretical measures

Information-theoretical metrics of surprisal, entropy, and

entropy reduction were estimated using a pre-trained trans-

former-based language model, the X-large version of GPT-2

(Radford et al., 2019), which was designed for generative lan-

guage tasks. It can provide the probability distribution of the

next word given a word sequence with no more than 1024

words. Empirical evidence showed that the correlation be-

tween human and GPT-2's word predictions improved as the

contextual window increased, but a 100-word context per-

formed well enough (Goldstein et al., 2022). Therefore, we

used the 100-word context to predict the upcoming words.

Given the preceding context, every word in the lexicon W can

be assigned a probability P at word point t. The calculations of

specific information-theoretical measures are described

below.

2.2.1. Surprisal
Surprisal was estimated using the negative logarithm of the

probability of presented word at time t as defined in Eq. (1):

SðtÞ ¼ �log2

�
pw

�
(1)

where pw is the probability of the word w presented at word

point t, calculated based on the preceding context words. A

higher surprisal value indicates an unexpected word, making

it challenging to integrate it into the existing internal repre-

sentation of the known utterance. Since (Hale, 2001) and (R.

Levy, 2008), the concept of surprisal has been associated with

the cognitive resources required to process a new word.

2.2.2. Entropy
Entropy was defined as the uncertainty of prediction, the

value of which would be maximized when all words were

equally likely to appear given the preceding context. Following

previous studies, we used the next word entropy to quantify

the uncertainty at time t about the nextword (theword at time

tþ 1) (van Schijndel& Linzen, 2018;Willems et al., 2016). It was

calculated as the weighted sum of the surprisal of all candi-

dates, as shown in Eq. (2).

Hðtþ 1; tÞ ¼ �
X

v2W

�
pv

��wt
1

�
*log2

�
pv

��wt
1

�
(2)

whereW is the candidate vocabulary for the nextword in GPT-

2 model, and pv is the probability of any word v at time tþ1. In

the following, we use entropy to refer to next word entropy for

simplicity.
Please cite this article as: Song, M., et al., The unique contribution of
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In addition, to examine the impact of the convolution of

metric series with hemodynamic response function, we also

calculated the current-word entropy. The entropy values

(next-word entropy) were shifted forward by one time stamp,

that is, the next-word entropy at time t-1was also the current-

word entropy of the word at time t.

However, the entropy about the next word is not the same

as the entropy about the rest of the sentence according to Hale

(2006), and there was difficulty in defining the uncertainty

about a sentence. We followed Frank (2013) in calculating a

simplified entropy of sentences using actual words, but we

deviated from their approach by summing the entropy of

upcoming words instead of applying the chain rule. We use Hs

defined by Eq. (3) to refer to the entropy of a sentence.

HsðtÞ ¼
Xn

i¼1

Hðtþ i; tÞ (3)

We adopted n ¼ 4 following the work of Frank and col-

leagues (Frank, 2013; Frank et al., 2015) so that no more than

four upcoming words were taken into account when

computing the entropy of the sentence. Note that we padded a

placeholder at the end of a sequence to get one step further

predictions of the GPT-2 model, which was different from

Frank's calculation.

2.2.3. Entropy reduction
The change in prediction between point t and point t þ 1 can

be quantified as the decrease of uncertainty, which measures

information gained from word t. ER brought by word t can be

defined with Eq. (4). Because we were interested in the uni-

directional effect of uncertainty decrease, the negative values

were set to zeros (Lowder et al., 2018).

ERðtÞ ¼ maxfHsðt� 1Þ �HsðtÞ; 0g (4)

When calculating the measures for the 2132-word stimuli

provided in the Alice dataset, we kept the nearest 100words in

the preceding context to make sure that all predictions were

based on a fixed length of context. As a result, the first 30 data

points in the neural signals that corresponded to the first 100

words were not considered in the prediction model. To pre-

serve information about paragraph segmentations in the

model, we retained the period symbols at the end of the par-

agraphs in the sequences as paragraph delimiters. However,

measures of these symbols did not enter subsequent analyses.

We note that the language model does not simply segment

words by explicit spaces; long, compoundwordsmight be split

into word pieces or commonly repeated tokens (e.g., waistcoat

to waist and coat). Such segmentation of compound words

occurred in 1.9% (41/2132) of the words. In these cases, the

measures of the first token were used to represent the word.

2.3. Analysis of the information-theoretical metrics

2.3.1. Comparisons between metrics derived from the real
and shuffled sequences
We calculated the information-theoretical metrics, including

surprisal, entropy, and entropy reduction for the real

sequence of the transcription text of the story. To illustrate

that the metrics might capture certain properties of the real
uncertainty reduction during naturalistic language comprehen-
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sequences in language and differentiate ER from the other

metrics, the information-theoretical metrics were computed

for sequences of randomly shuffled words from the original

text. The two sets of metrics were expected to differ because

the shuffled sequence should induce high uncertainty, little

compositionality, and little information gain. We utilized

kernel density estimation to visualize the probability distri-

bution of different metrics. The shuffling and computation

processes were repeated 500 times to provide a comprehen-

sive description of the distinctions between the real and

shuffled sequences. For each metric, we computed the mean

value for each shuffled sequence, established a normal dis-

tribution of mean values, and tested the mean value of the

actual sequence against this distribution.

2.3.2. Bold signal simulations with the metrics
Following previous work (Brennan et al., 2016; Russo et al.,

2020; Willems et al., 2016), we established point events for

each metric using the onset of each word provided in the

dataset. The intensity of these events is proportional to the

metric at the corresponding points. The values were Z-scored

among each kind of metric. The events were convolved with a

canonical hemodynamic response function (HRF) using the

Python package “nipy” (nipy.org) and were summed to yield

estimated BOLD responses for each indicator separately. The

estimated responses were then down-sampled to .5 Hz to

align with the observed responses which were collected every

2 s. These estimated BOLD series were used as predictors of

corresponding neural signals in the subsequent process. As a

result, we obtained 342 data points after the convolution and

down-sampling, corresponding to the presentation time of

2032 words for further analysis.

2.3.3. Correlations between the metrics and between the
simulated neural response
In addition to prosodic break strength and word frequency,

which were provided in the Alice dataset, we computed two

other word-level metrics of no interest that are important to

modeling neural signals during narrative comprehension:

word duration (WD) and root mean squared (RMS) amplitude

of the word sound among the duration of word presentation.

The WD was calculated as the time difference between the

offset and onset of a word; the RMS was calculated as the root

mean square of sound power during word presentation, using

the audio stimuli provided in the dataset. We calculated the

correlations of the metrics derived from the real sequence,

including WD, RMS, PBS, LgWF, surprisal, entropy, current-

word entropy, and ER. The correlations were calculated with

the metric sequences of 2002 words, and correlations among

the simulated data series (with a length of 342) corresponding

to different metrics were also calculated to show the change

brought by the convolution procedure.

2.4. ROI-based analysis on the VMPFC

Because of the established role of vmPFC in uncertainty pro-

cessing, semantic composition, and reward processing, we

particularly investigated the vmPFC to disentangle the po-

tential effects of different information-theoretical metrics in

this region. The location of vmPFC was determined using
Please cite this article as: Song, M., et al., The unique contribution of
sion, Cortex, https://doi.org/10.1016/j.cortex.2024.09.007
neurosynth meta-analysis (neurosynth.org) by selecting the

intersection of voxels revealed by the terms vmpfc and cortex

vmpfc.

2.4.1. Nested model comparison on ROI
We performed likelihood ratio tests (LRT) on linear mixed-

effects models with and without each predictor of interest.

BOLD time courses extracted from each subject's data were

averaged across all the voxels in vmPFC and were concate-

nated across subjects. Predictor series corresponding to the

BOLD time courses were treated as the fixed effects and the

subject was treated as random effect. The model containing

WD, RMS, PBS, LgWF, and subject identity was created as the

base model. Each of the target predictors (surprisal, entropy,

or ER) was respectively entered to create a nested model.

Likelihood ratio test was performed to assess the effect of

including the target predictor. Next, to test the unique

contribution of each target predictor in addition to the other

two, some other base models were built by including two of

the predictors, whereas the alternative model included all

three predictors. Thus, for each predictor of interest, two LRTs

were performed to examine its sensitivity and the unique

contribution as compared to the other metrics in explaining

the vmPFC responses.

2.5. Whole-brain analysis

We then examined the effects of the information-theoretical

metrics in accounting for neural responses in any gray mat-

ter area. As was done for the nested model comparison, two

contrasts were performed in the whole brain for each pre-

dictor of interest. That is, in one analysis, the sensitivity of the

target predictor was tested. In the other, the unique contri-

bution of each target metric was tested by controlling for the

effect of the other twomeasures. The first-level general linear

model estimated the voxel-wise coefficients for and the vari-

ance explained by the set of information-theoretical metrics

within each subject, with WD, RMS, PBS, and LgWF included

as control variables. To disentangle the effects of correlated

variables, we first used all the control variables to predict the

BOLD signals and recorded the residuals. Then, the predictor

of interest was directly used to predict these residuals. This

procedure differs from residualizing the target predictor by

control predictors used by Brennan et al. (2016) as some ana-

lyses with residualized variables cannot be meaningfully

interpreted (Wurm & Fisicaro, 2014). In both methods, the

effects of control variables were regressed out, but by pre-

dicting the residuals of the BOLD signals, the target predictor

remained unchanged, ensuring the reliability and interpreta-

tion of its coefficients. The values of the convolved target

predictor were shuffled, and the shuffled values were then

used to predict the residual signals for comparison.

At the group level, beta values from the first-level GLMs

from each participant were evaluated with paired-sample t-

tests between the real models and the shuffled models. To

further ensure the reliability of the reported results, paired-

sample t-tests were also applied to the variance explained

by the real and shuffled models. We report voxels with a p-

value of less than .005 in beta tests and a p-value of less than

.05 in variance tests as statistically significant. A cluster-wise
uncertainty reduction during naturalistic language comprehen-
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Q3

Fig. 1 e Distributions of surprisal, entropy, and entropy reduction of words in the real text and the randomly shuffled

sequences. Each line in blue was a kernel density estimation for a shuffled sequence.
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correction was applied to the efficiency map to correct for

multiple comparisons.We ran 3dFWHMx in AFNI (https://afni.

nimh.nih.gov/) to estimate the smoothness of the data with a

file of a subject that contains the residuals of everything that

was not modeled. The output numbers were then used with

3dClustSim to get the number of contiguous voxels that were

needed for a cluster at the significant level of p < .05 with

10,000 iterations of a Monte Carlo simulation.
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3. Results

3.1. The information-theoretical metrics

Weutilized kernel density estimation to get the distribution of

each metric for both the real sequence and 500 shuffled se-

quences. The distributions were plotted in Fig. 1, showing that

ER had a different pattern from the other twometrics. The real

sequence had lower surprisal values (M ¼ 4.266, SD ¼ 3.833,

p < .0001 against the shuffled means) and lower entropy

values (M ¼ 2.953, SD ¼ 1.377, p < .0001 against the shuffled

means) than that in shuffled sequences, suggesting higher

predictability of the story text than the shuffled sequence.

Values of entropy reduction were higher for the real text

(M ¼ .683, SD ¼ .995, p < .0001 against the shuffled means),

indicating the information gain as the text unfolds. These

results suggested that ER could differ significantly from sur-

prisal, despite both being positively linked to processing dif-

ficulty to some extent. Moreover, all three metrics in the

actual sequence demonstrated significantly higher standard

deviations compared to their distributions in shuffled se-

quences (p < .0001), indicating a more dynamic state associ-

ated with language processing. These information-theoretical

metrics were used below as inferences of different mental

states to account for the neural responses to the actual story.
Table 1e Pearson correlations between all pairs of textmetrics o
convolution with a hemodynamic response function.

WD RMS PBS

RMS -.096 (-0.238) e e

PBS .516 (.459) -.228 (-.145) e

LgWF -.715 (-.676) .025 (.201) -.339 (-.3

Surprisal .240 (.383) .148 (-.076) -.040 (.41

ER .067 (-.006) .080 (-.126) -.180 (.06

Entropy .044 (.136) -.015 (-.046) .203 (.235

Current-word Entropy .141 (.127) .128 (-.042) -.074 (.22

Please cite this article as: Song, M., et al., The unique contribution of
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Several textmetrics, such as word frequency and surprisal,

were naturally correlated over the text (Table 1; Fig. 2).

Moreover, the correlations between some of the metrics

changed significantly before and after the convolution pro-

cedure, as the convolution helped to mitigate sensitivity to

temporal variations. For illustration, we presented the corre-

lations between entropy and current-word entropy before and

after convolution (Fig. 2). The entropy (of the next word) and

current-word entropy vectors are mismatched by one time

point, where the entropy at time t-1 was the current-word

entropy of the word at time t. The correlation between en-

tropy and current-word entropy was only .225 in their raw

measures, but became .995 after convolution (Fig. 2d). Thus,

some of the seemingly high correlation was a natural conse-

quence of the convolution.

3.2. Effects of information-theoretical metrics in vmPFC

The a priori defined vmPFC area included 2248 voxels with a

resolution of 2 mm. Likelihood ratio tests revealed that all

three information-theoretical metrics contributed signifi-

cantly to fitting the mixed linear models, but only surprisal

and ER had significant unique contributions in addition to the

other metrics (Table 2). Importantly to the interest of this

study, the predictive effect of ER was maintained when en-

tropy and surprisal were pre-included, indicating its inde-

pendence from the other two metrics.

3.3. Brain regions sensitive to each of the metrics in the
whole brain

We investigated brain areas that were sensitive to the

information-theoretical metrics, including surprisal, entropy,

and ER respectively, by comparing the coefficients of the real-

effect model with the shuffled-effect model. Consistent with
ver time before (outside brackets) and after (inside brackets)

LgWF Surprisal ER Entropy

e e e e

e e e e

34) e e e e

2) -.318 (-.281) e e e

8) -.177 (-.031) .292 (.076) e e

) -.042 (-.080) .077 (.711) -.568 (.015) e

6) -.198 (-.078) .528 (.704) .489 (.034) .225 (.995)
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Fig. 2 e Scatter plots of pairs of information-theoretical metrics (surprisal, entropy, entropy reduction, and current-word

entropy) over time before and after convolution with a hemodynamic response function. The correlation between current-

word entropy and entropy was displayed to illustrate the effect of HRF convolution on overriding the actual relations

between the two variables. The black line is the line of best fit. The shaded areas indicate the 95% confidence intervals.
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previous studies (Russo et al., 2020; Willems et al., 2016), re-

sponses of voxels along the bilateral lateral superior and

middle temporal gyri (STG and MTG), including the anterior

temporal lobe, were significantly predicted by surprisal

(Fig. 3a). Moreover, we found that the bilateral middle frontal

gyri (MFG) and right middle occipital gyrus were negatively

associated with surprisal, which might reflect processing

smoothness. The majority (259 out of 283) of the voxels that

were positively sensitive to entropy were also sensitive to

surprisal, located in the left anterior temporal lobe. The right

MFG and the right supramarginal gyrus were negatively pre-

dicted by entropy (Fig. 3b). The results of entropy were

partially consistent with (Willems et al., 2016), in which only

the negatively associated areas were reported.

Importantly, we found areas that were sensitive to ER

comprised the positively associated voxels in bilateral vmPFC

(overlapped with the vmPFC ROI by 45%, i.e. 135 out of 297

voxels) and the left inferior frontal gyrus (LIFG), and the

negatively associated voxels in bilateral insula, thalamus,

basal ganglia (BG), and middle cingulate cortex (MCC; Fig. 3c).

3.4. The unique contribution of each metric in
accounting for the whole-brain responses

The findings above showed that surprisal, entropy, and ER

were all able to account for neural responses in different brain

regions. We further investigated the unique contribution of

each metric beyond the effect of the other two measures.

Unique contributions of ER in addition to surprisal and

entropy were found in all the clusters that had been identified
Table 2eOverall and unique effects of entropy, surprisal, and ent
during speech comprehension.

Entropy Surprisal ER Entr

LRT .019* .007** .028*

*: p < .05. **: p < .01.

Please cite this article as: Song, M., et al., The unique contribution of
sion, Cortex, https://doi.org/10.1016/j.cortex.2024.09.007
as sensitive to ER (Fig. 3f as compared to Fig. 3c). The effects of

ER were positive on the vmPFC clusters (overlapped with the

vmPFC ROI by 47%, i.e. 119 out of 254 voxels) and the LIFG, and

negative on the bilateral insula, thalamus, BG, and MCC.

Surprisal accounted for a unique proportion of variance in the

left anterior lobe beyond the other two metrics (Fig. 3d). This

area was also found in the surprisal-sensitivity analysis

(Fig. 3a), but the effect size was reduced when the model

included the other two metrics. No region was found to be

uniquely explained by entropy. Overall, both entropy reduc-

tion and surprisal had unique contributions in explaining the

neural responses during language comprehension, but en-

tropy reduction independently explained the variances in the

vmPFC and LIFG.

3.5. The reduction rather than the fluctuation as a
contributing factor

To clarify whether the effect of entropy reduction was specific

to the decrease of entropy, or whether the entropy fluctuation

in any direction was able to account for the neural responses,

we further examined the effects of entropy fluctuation (EF;

calculated by Hs (t-1) - Hs (t), and the negative values were

kept; Z-scored). The same procedure of thewhole-brain voxel-

wise analysis was implemented.

No clusters survived the cluster-wise correction in the

analysis for EF. We counted the number of significant voxels

in voxel-wised tests (that is, the cluster-wise correction was

not applied) and examined the increase in explained vari-

ance across subjects in the predicted voxels. The results
ropy reduction in explaining themean responses in vmPFC

opy (unique) Surprisal (unique) ER (unique)

.841 .288 .037*
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Fig. 3 e The sensitivity (left column) and unique contribution (right column) to the whole brain. Voxel-wise p< .005, cluster-

wise FWE corrected p < .05. The voxels in blue were of negative coefficients and the voxels in orange were of positive

coefficients.
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showed that ER not only predicted a large number of voxels

but also explained significantly greater variance in predicted

voxels, even in the voxels predicted by EF (t ¼ 49.375,

p < .0001; Fig. 4). These results indicated that the reduction,

rather than the fluctuation, of uncertainty is an effective

factor in modeling neural responses during language

comprehension.

3.6. The relations between the surprisal and the other
two metrics

As most brain regions that were sensitive to entropy were

also those sensitive to surprisal, we further analyzed the

effect of surprisal to clarify its relationship in competition
Please cite this article as: Song, M., et al., The unique contribution of
sion, Cortex, https://doi.org/10.1016/j.cortex.2024.09.007
with entropy and ER respectively. Similar to the unique

contribution analysis, we looked for voxels predicted by one

metric while controlling for the effect of the other. When

entropy was pre-included, the clusters that could be addi-

tionally explained by surprisal reduced both in number and

size as compared to the surprisal-sensitive map (Fig. 5a, as

compared to Fig. 3a). Entropy showed no effects in

predicting neural responses in addition to surprisal. Some

areas sensitive to surprisal turned out to be not significant

after the inclusion of entropy, suggesting that entropy

served as a predictor insufficiently alternative to surprisal.

The effects of surprisal were not deficient by the pre-

inclusion of ER, confirming that they are independent

contributing factors.
uncertainty reduction during naturalistic language comprehen-

https://doi.org/10.1016/j.cortex.2024.09.007


Fig. 4 e Effects of two measures characterizing the change in uncertainty. The grey bars represent the number of predicted

voxels by individual measures (the cluster-wise correction was not applied); the green bars indicate the mean variance

explained by the measures (in corresponding predicted voxels); the blue bars indicate the mean variance explained by the

measures (in voxels predicted by EF).
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4. Discussion

In this study, we distinct the effect of information gain of a

word (measured by entropy reduction) from processing diffi-

culty (measured by surprisal and entropy) from neural re-

sponses during naturalistic narrative processing.

Information-theoretical metrics of real and random se-

quences were derived with a pre-trained GPT-2 model and

were used to model neural responses in the brain. In the ROI

analysis, we found that entropy, surprisal, and entropy

reduction all contributed to predicting the mean neural ac-

tivities of the ventromedial prefrontal cortex. Then we con-

ducted whole brain analysis to differentiate the effects of

entropy reduction in predicting brain activities from that of

the other two metrics. We found that ER contributed inde-

pendently to the other two metrics, indicating a differentia-

tion between information gain and processing difficulty

brought by the uncertainty in language. Besides, the analysis

of the relations between surprisal and the other two metrics
Fig. 5 e Effects of surprisal with one of the other metrics pre-inc

entropy pre-included. (b) He additive effects of surprisal with ER

corrected p < .05. The voxels in blue were of negative coefficien

Please cite this article as: Song, M., et al., The unique contribution of
sion, Cortex, https://doi.org/10.1016/j.cortex.2024.09.007
revealed that the effects of entropy in accounting for neural

signals during natural comprehension were homologous with

that of surprisal.

There are two essential properties of natural language as

compared to a random sequence of words: high predictability

and informativeness. High predictability is demonstrated by

the lower surprisal and entropy in real text compared to a

random sequence (Fig. 1), indicating that in the case of a

random sequence, surprisal does not necessarily correspond

to increased information. The predictability of natural lan-

guage, which might be the result of recognizing the familiar

and generalizing to the similar, makes predicting in language

an efficient solution for fast and accurate comprehension

despite the noisiness, ambiguity, and speed of our linguistic

input (Kleinschmidt & Jaeger, 2015). The high informativeness

means that successful comprehension leads to adaption to

the novel input and reduction in uncertainty about the future

input. Therefore, the degree of entropy reduction during pre-

diction is a sign of how successful the comprehension is, and
luded in the GLMs. (a) the additive effects of surprisal with

pre-included. Voxel-wise p < .005, cluster-wise FWE

ts and the voxels in orange were of positive coefficients.
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the reduction of entropy has been suggested to reflect end-

state confirmation that happens with successful compre-

hension (Venhuizen et al., 2019).

Entropy reduction positively affected the activations in

LIFG and vmPFC beyond the effects of entropy and surprisal

(Fig. 3f), which might reflect the pursuit of information

regardless of processing difficulty. The activation in LIFG was

related to increasing demand for semantic integration (Zhu

et al., 2013) and selection among competing semantic alter-

natives (Moss et al., 2005; Thompson-Schill et al., 1997). It

seems to support the ERH that linked ER to processing diffi-

culty, but the sensitivity to long-distance dependencies in

LIFG differs from the conceptual combinatory effects reflected

by LATL (Pylkk€anen, 2019b), thus there's a difference between

the processes reflected by ER and that of surprisal. The key is

that the semantic alternatives are selected only when the

informative comprehension happens, corresponding to the

fact that ER appears at only some of the time points and high-

gamma power in IFG increases when words can be merged at

both the middle and the end of sentences (Nelson, El Karoui,

et al., 2017). It is not necessary to limit the activation in LIFG

to language-specific comprehension, as it contains a

language-selective region and a domain-general MD region

(Fedorenko& Blank, 2020). The activation in vmPFC, a domain-

general brain area, further suggested that ER can be seen as a

certain reward in communication that changed the compre-

hender's belief about the future. This area was found to be

sensitive to uncertainty fluctuation and belief updating pre-

viously (Majumdar et al., 2023; Mi et al., 2021), and involved in

reward processing (Ciaramelli et al., 2021; Grabenhorst &

Rolls, 2011; Rolls, 2022; Strait et al., 2014). This kind of

reward, or ongoing uncertainty estimations about future

outcomes, might be related to affective experience (Asutay

et al., 2020; Majumdar et al., 2023; Stefanova et al., 2020),

enhancing the role of vmPFC in processing uncertainty as it is

a hub to the generation of affective meaning (Roy et al., 2012).

Another piece of evidence of the reward-related conse-

quence of entropy reduction was the brain areas negatively

activated by it, including the bilateral insula, thalamus, basal

ganglia (BG), and middle cingulate cortex (MCC). The insula is

involved in maintaining and manipulating information,

which is crucial for language comprehension (Menon&Uddin,

2010). The thalamus and MCC regulate both cognitive and

emotional processing (Fouragnan et al., 2018), while the BG

monitors the reward prediction error (O'Doherty et al., 2004).

Decreased activations in these areas indicate a lower demand

for cognitive resources when long-distance dependencies are

solved and uncertainty about the sentence is reduced. The

critical point is that uncertainty is aversive, correlating with

negative affect, such as vigilance and anxiety (Hirsh et al.,

2012; Jackson et al., 2015; Whalen, 2007). Motivation to avoid

high uncertainty increases resource allocation in the process

of reward pursuit to facilitate uncertainty reduction (Gold

et al., 2019; Shen et al., 2015).

Our results on the effects of surprisal and entropy showed

important differences from those of previous work (Russo

et al., 2020; Willems et al., 2016). Besides bilateral temporal

lope, we found broad areas in the frontal lobe negatively

activated by surprisal, which was ignored by previous

researchwith the hypothesis that onlymore positive coeffects
Please cite this article as: Song, M., et al., The unique contribution of
sion, Cortex, https://doi.org/10.1016/j.cortex.2024.09.007
were related to surprisal. Regions where the signals were

negatively associated with surprisal largely overlapped with

the multiple demand network (Duncan, 2010), suggesting that

the integration of high-surprisal words may be competitive to

other cognitive processes for resources. Willems et al. (2016)

reported that signals in several frontal lobe areas were nega-

tively associated with the next-word entropy, but we specu-

late that it was part of the effects of surprisal. The high

correlation between entropy and surprisal after convolution

was intermediated by the current entropy at time t (Fig. 2d), as

high uncertainty in prediction naturally leads to high predic-

tion error (surprisal). Further evidence is that the activation of

the next word entropy in this study was nearly a subset of

areas activated by surprisal and the effects of entropy dis-

appeared after the pre-inclusion of surprisal (Fig. 3bee).

However, we do not claim that the next word entropy has no

effects beyond surprisal in other studies, especially those that

are sensitive to subtle temporal differences.

Further research is needed to investigate the relationship

between entropy reductions calculated by different methods.

A decrease in grammatical uncertainty was found to be posi-

tively correlated with temporal lobe activity (Nelson,

Dehaene, et al., 2017) and had a significant effect on anterior

frontal electrodes (Hale et al., 2018). Frank and colleagues

(Frank, 2013; Frank et al., 2015) confirmed that ER computed by

looking several tokens into the future was independent of

surprisal, but they failed to identify a corresponding neural

component. This may be due to the difficulty in obtaining

word probabilities of a much larger number of word candi-

dates compared to grammar candidates. We overcame this

quantification obstacle with the GPT-2 model, which is not

grammar-based, and found the simplified ER showed effects

not only in the IFG but also in the vmPFC and other brain

areas. Our results seemed to be different from those in

electrode-based studies, but it is not conclusive whether these

two kinds of measure refer to the same phenomenon. The

positive activation in IFG might be related to the effect on

anterior frontal electrodes found by Hale, et al. (2018). The

node-opening and node-closing effects, where high-gamma

power increased with each successive word in a sentence

but decreased suddenlywheneverwords could bemerged into

a phrase (Nelson, El Karoui, et al., 2017), provided a syntactical

perspective that could be linked to our word-based methods.

The closing of nodes leads to a reduction of uncertainty, thus

the high-gamma power related to the increasing number of

nodes closing agreed with our results to some degree. How-

ever, the opening and closing of nodes did not strictly corre-

spond to the increasing and reducing of entropy. More studies

with both natural and carefully designed stimuli are needed to

clarify this relationship.

Besides, it is crucial to examine how individual differences

in uncertainty tolerance affect neural responses during lan-

guage processing. For instance, curiosity, which is based on

temporal uncertainty about the future and the pursuit of a

reduction of uncertainty in the future, can be experienced as

both negative and positive, and higher curiosity reliably pro-

motes the patience to let information unfold over time

(Hsiung et al., 2023). Humans devote a substantial part of their

time to seeking and consuming information, to progressively

reduce uncertainty about the world around us, and to accrue
uncertainty reduction during naturalistic language comprehen-

https://doi.org/10.1016/j.cortex.2024.09.007
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information thatmakes us feel good (van Lieshout et al., 2020).

This implies that a variety of emotions, from the basic ones to

the sophisticated feelings such as humor and aesthetic affects

in language comprehension, could be associated with expec-

tations formed about these dynamics.

In summary, this study reveals that entropy reduction

represents the cognitive neural process of information gain

that can be dissociated from processing difficulty. The iden-

tification of neural substrates that mark the decrease in un-

certainty might imply the brain's desire for information

regardless of processing difficulty. The processing difficulty

brought by the prediction error and the information gain

tracked by the entropy reduction are both important aspects

of language processing. They differ human language from the

random sequence and might be effective measures for the

evaluation of the smoothness and informativity of language.
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analysis are available at https://osf.io/2zp7y/.
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